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Abstract

We introduce an extension of the Capital Asset Pricing Model (CAPM) in which idiosyncratic

lottery-like payoffs are priced in equilibrium. Lottery demand traders with a textbook proba-

bility weighting function overvalue stocks with high maximum returns, and interact with arbi-

trageurs who trade against mispricing. The model formalizes how extreme returns affect asset

prices and provides a theory of the CAPM alpha. The model provides a micro-foundation and a

common underlying explanation for the MAX effect, low-risk anomalies (the beta anomaly, the

idiosyncratic volatility puzzle, and the overpricing of left-tail risk), aggregate mispricing, and

momentum in stock returns. The model provides a foundation for constructing MAX-enhanced

and MAX-weakened versions of the anomalies, the former which roughly double the baseline

anomaly CAPM alphas and the latter which render the anomalies insignificant, consistent with

the predictions of the model. We document that the anomalies are stronger in periods of higher

aggregate lottery demand (even after controlling for sentiment) and that the results survive

limits to arbitrage. Our findings show that probability weighting provides a unified theoretical

and empirical explanation for six fundamental challenges to the CAPM and helps bridge the

gap between rational and behavioral theories of asset prices.
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1 Introduction

The capital asset pricing model (CAPM) of Sharpe (1964) and Lintner (1965) was a major

advance in financial theory. It remains widely used for mutual fund performance evaluation, capital

budgeting and project valuation, and for tests of market efficiency and mispricing (Liu, Moskowitz

and Stambaugh, 2021). Its theoretical development led to three Nobel prizes (to Markowitz, Tobin,

and Sharpe), it provides the motivation for modern factor models in empirical finance, its parameter

beta for each stock is widely reported to investors in financial media, and its equilibrium relation

for the expected return on a stock is among the best-known equations in economics. Despite

these developments, the CAPM has also faced persistent challenges from “anomalies” that earn

positive abnormal returns (alphas) unexplained by the CAPM. Among the best known of these

anomalies are the beta anomaly (Jensen, Black and Scholes, 1972; Frazzini and Pedersen, 2014) in

which stocks with high market beta earn low abnormal returns, the idiosyncratic volatility puzzle

(Ang et al., 2006) in which stocks with high idiosyncratic volatility earn low abnormal returns,

momentum (Jegadeesh and Titman, 1993) in which stocks with low past returns (losers) earn low

abnormal returns relative to stocks with high past returns (winners), the overpricing of stocks with

high left tail risk (Atilgan et al., 2020; Kapadia et al., 2019; Wang, 2023) in which stocks with high

tail risk earn low abnormal returns, the MAX effect (Bali, Cakici and Whitelaw, 2011) in which

stocks with high maximum daily returns earn low abnormal returns, and the mispricing premium

(Stambaugh and Yuan, 2017) in which stocks with low ex ante alphas earn low abnormal returns.

These anomalies in particular have cast doubt on the empirical validity of the CAPM.

While behavioral economics has long recognized the role of behavioral investors in financial

markets (Shiller, 2000; Akerlof and Shiller, 2010), more than a half-century after the introduc-

tion of the CAPM there is not yet a standard behavioral generalization of the CAPM that helps

explain each of these six anomalies. This paper attempts to fill this gap. Here, we consider an

extension of the CAPM based on one of the well-established biases in the behavioral economics

literature: the tendency to overweight extreme payoffs driven by probability weighting (Wakker,

2010; Diecidue and Wakker, 2001). Models based on probability weighting have been increasingly

applied to financial markets to explain an array of asset pricing phenomena at three different lev-
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els of aggregation (individual investors, individual stocks, and the aggregate market).1 For the

aggregate market, probability weighting has been applied to explain the equity premium puzzle

(De Giorgi and Legg, 2012), the variance premium puzzle (Baele et al., 2019), the pricing kernel

puzzle (Polkovnichenko and Zhao, 2013; Dierkes et al., 2023), and time variation in the market

risk-return tradeoff (Ghazi, Schneider and Strauss, 2024). In the cross-section, probability weight-

ing helps explain time variation in the slope of the security market line (Shi, Cui and Zhou, 2023).

For individual investor behavior, probability weighting is linked to holding lottery-like stocks and

under-diversified portfolios (Polkovnichenko, 2005; Dimmock et al., 2021).

In this paper, we derive an extension of the CAPM in which lottery demand traders deviate from

mean-variance preferences by overweighting lottery-like payoffs via a standard textbook probability

weighting function.2 These traders interact in a market with arbitrageurs that have standard

mean-variance preferences. In equilibrium, lottery demand traders are attracted to stocks with

high maximum returns, while arbitrageurs are drawn to stocks with high CAPM alphas. The

model provides a formal theory of the “CAPM alpha” that incorporates a role for idiosyncratic tail

risk. The resulting “MAX CAPM” provides a micro-foundation for the MAX effect and its role in

providing a unified theoretical explanation for properties of the six market anomalies noted above.

We empirically test the model predictions using the sample of US stocks over a period of 6

decades. A new theoretical prediction of the present model is that the anomalies will be strength-

ened by creating MAX-enhanced versions of the anomalies which invest in the subset of long-leg

stocks with low maximum returns and short the subset of short-leg stocks with high maximum

returns. The model also predicts that the anomalies will be weakened by creating MAX-weakened

versions which invest in the subset of long-leg stocks with high maximum returns and short the

subset of short-leg stocks with low maximum returns. We test this prediction for each of the

anomalies and find that MAX-enhanced portfolios roughly double the anomaly CAPM alphas of

the corresponding baseline anomalies, while MAX-weakened portfolios eliminate the anomalies.

1Empirical studies find that probability weighting also provides a unified explanation for behavior in lab experi-
ments (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992), betting markets (Snowberg and Wolfers, 2010),
insurance markets (Abito and Salant, 2019), state lottery markets (Lockwood et al., 2024), and contract markets
(González-Jiménez, 2024).

2We use the non-extreme outcome expected utility (NEO-EU) weighting function which Wakker (2010) notes
has a clearer and more convincing interpretation than other probability weighting functions. Further, Lockwood
et al. (2024) find that it can explain their data on demand elasticities for state-run lotteries better than alternative
weighting functions.
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In particular, the baseline anomaly alphas range between 40 basis points and 71 basis points per

month while the MAX-enhanced anomaly alphas range between 78 basis points and 147 basis points

per month. Further, while the max-enhanced alphas are all significant at the 0.01 level, the max-

weakened anomaly alphas range between -28 and 29 basis points per month and none are significant

at the 0.05 level.3 We find that these results survive limits to arbitrage.

A second theoretical prediction of the model is that the anomalies will be stronger in periods of

higher aggregate lottery demand. Using a probability weighting-based measure of aggregate lottery

demand from the recent literature (Ghazi, Schneider and Strauss, 2024; Ghazi et al., 2024), we find

that each of the CAPM anomalies is stronger following periods of higher aggregate lottery demand,

even after controlling for market sentiment.

Our paper makes three main contributions. First, we contribute to the literature on probability

weighting in financial markets by introducing a new generalization of the CAPM that fuses the

mean-variance framework with a textbook probability weighting function, while including hetero-

geneous investors (arbitrageurs and lottery demand traders). We use this framework to derive

new theoretical predictions that we test empirically and for which we find empirical support. Sec-

ond, we contribute to the literature on the MAX effect by providing it with a microfoundation

and highlighting its role as providing a unified theoretical explanation for basic CAPM anoma-

lies. Third, we contribute to the literature on six basic CAPM anomalies by showing theoretically

and empirically that these anomalies are strengthened (weakened) by constructing MAX-enhanced

(MAX-weakened) versions of the anomalies and that these results hold even when restricted to large

cap stocks which are among the most liquid and easiest to arbitrage and that they hold in the mod-

ern era of trading technology (defined in Chen and Velikov (2023) as the post-2005 era), in which

transaction costs have declined (Novy-Marx and Velikov, 2016), market efficiency has increased

(Rösch, Subrahmanyam and Van Dijk, 2017), and many anomalies have disappeared (Chen and

Velikov, 2023). Further, we show that a probability weighting-based measure of aggregate lottery

demand predicts time variation in the CAPM alphas of the anomalies in the direction predicted by

the theory. As a secondary contribution, we introduce an alternative measure of a stock’s perceived

3Only the CAPM alpha for the MAX-weakened IVOL anomaly (-28 basis points per month) is marginally signif-
icant at the 0.10 level among the MAX-weakened portfolios. That reflects a positive premium for idiosyncratic risk
among MAX-weakened portfolios. However, it is not a robust feature of our data as it disappears in the modern era
of trading technology and is also eliminated using our alternative measure for a stock’s maximum return.
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maximum return and show that this measure yields similar empirical results, but is substantially

less correlated with idiosyncratic volatility.4 In this regard, the alternative MAX measure evades

the critique of Hou and Loh (2016) that the MAX effect does not provide a valid explanation of

the IVOL puzzle.

To elaborate on the first contribution we note that recent work applies probability weighting to

the cross-section to extend the CAPM (Barberis, Jin and Wang, 2021; Driessen, Ebert and Koëter,

2021; Shi, Cui and Zhou, 2023) but has not yet delivered a structural formula for the CAPM alpha

or provided the link between the CAPM alpha and the MAX effect that is central to our model.

The prior work on extensions of the CAPM with probability weighting also does not consider

different types of investors, instead using either representative agents who distort probabilities,

or homogeneous investors that all have the same preferences. While prior work has combined

prospect theory with the CAPM (Barberis and Huang, 2008; Barberis, Jin and Wang, 2021), the

resulting model becomes too complex to obtain closed form results and the prior papers rely on

simulations to study the model.5 In contrast, in our setting the model can be solved in closed

form even while accounting for the optimizing decisions of two types of investors (arbitrageurs

and lottery demand traders). We show that the equilibrium exists and that it results in a closed

form representation of the CAPM alpha. The model also generates the clear prediction that the

anomalies can be strengthened or weakened by constructing MAX-enhanced or MAX-weakened

versions, respectively, a prediction that does not emerge from the prior extensions of the CAPM

and that stands in contrast to the vast theoretical literature that accentuates the left-tail but omits

a preference for lottery demand.

Shi, Cui and Zhou (2023) obtain a three-moment CAPM with probability weighting in which

co-skewness is priced. In contrast, our model involves the pricing of idiosyncratic risk. While Shi,

Cui and Zhou (2023) apply their model to explain time variation in the beta anomaly, they do not

consider the other anomalies that we study, nor do they construct max-enhanced and max-weakened

versions of the beta anomaly. Driessen, Ebert and Koëter (2021) consider a representative agent

4The correlation between idiosyncratic volatility and maximum daily return is near 0.90, while the correlation
between idiosyncratic volatility and the alternative Max measure is 0.64.

5As a consequence, the mechanism driving the anomalies is opaque and we only know that the anomalies are
driven by the asset’s degree of volatility, skewness, and capital gain overhang. Barberis, Jin and Wang (2021) consider
a broad set of 23 anomalies which include the idiosyncratic volatility puzzle, momentum, and the MAX effect, though
they do not consider the mispricing premium, the beta anomaly, or the MIN effect.
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model in which the agent deviates from mean-variance preferences by using a similar probability

weighting function to ours. They study a market with two assets, each with two possible outcomes,

and derive their representation in terms of prices rather than as an extension of the familiar CAPM

beta representation. They do not consider the anomalies that we consider, focusing instead on the

implications of their setting for the pricing of an asset’s skewness, volatility, and correlation. In

contrast to the previous approaches, we provide a microfoundation for our model by considering

both lottery demand investors and arbitrageurs with standard mean-variance preferences. This

approach includes both rational and behavioral investors, thereby providing a more complete picture

of the market. The theoretical predictions regarding max-enhanced and max-weakened versions of

the anomalies and our predictions pertaining to the proportion of lottery demand traders in the

market are new and particular to our setting.6

Regarding our second contribution, the proposed model formalizes how the ex ante maximum

return on an asset as perceived by lottery demand traders affects investor behavior and prices. A

distinctive feature of our model is that the MAX effect arises in equilibrium from the optimizing

decisions of both types of agents and that the idiosyncratic MAX return on a stock is negatively

related to the CAPM alpha. Our model contributes to the theoretical understanding of the MAX

effect and predicts its unifying role in explaining properties of central CAPM anomalies.

Accounting for the role of the MAX effect as providing a unifying theme for the basic CAPM

anomalies is a new theoretical development and provides testable predictions new to the literature.

For instance, as noted by Jacobs, Regele and Weber (2015), none of the standard explanations

for momentum implicate an important role for assets’ maximum returns. In addition, while prior

empirical work has linked the MAX effect to other anomalies, alternative theoretical models do

not account for this. A standard theme in the modern asset pricing literature is to predict CAPM

anomalies such as the IVOL puzzle and the overpricing of left tail risk in the opposite direction. In

6Our findings also contribute to the literature on extensions of the CAPM. Our approach differs from the mean-
variance-skewness (MVS) CAPM (Kraus and Litzenberger, 1976; Harvey and Siddique, 2000; Schneider, Wagner and
Zechner, 2020) in that under the MVS, only co-skewness is priced whereas in our approach both co-skewness (related
to the market’s maximum return) and idiosyncratic skewness (related to each asset’s own idiosyncratic lottery-like
payoff) are priced. Hong and Sraer (2016) consider a model with biased and unbiased investors in which a stock’s
own standard deviation is priced in equilibrium. They applied their model to explain the beta anomaly. In contrast,
in our setting, a stock’s own idiosyncratic extreme returns are priced in equilibrium and we study a broader set of
anomalies. Theories of optimism bias have been developed (Ghirardato, Maccheroni and Marinacci, 2004; Bracha
and Brown, 2012; Brunnermeier, Gollier and Parker, 2007) and applied to financial markets, but these models have
not been developed into extensions of the CAPM as we do here.
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particular, since models based on disaster risk (Barro, 2009; Wachter, 2013; Barro and Liao, 2021),

disappointment aversion (Routledge and Zin, 2010; Schreindorfer, 2020), or ambiguity aversion

(Gilboa and Schmeidler, 1989; Hansen and Sargent, 2001; Klibanoff, Marinacci and Mukerji, 2005)

accentuate the left-tail, they predict stocks with high idiosyncratic volatility or high left-tail risk

to earn positive abnormal returns. Yet this is in contrast to the empirical findings of Ang et al.

(2006), Kapadia et al. (2019), Atilgan et al. (2020), and Wang (2023) that idiosyncratic risk and

left-tail risk are negatively priced.

The proposed model helps to unify existing empirical findings regarding basic CAPM anomalies.

Bali, Cakici and Whitelaw (2011) and Cheon and Lee (2018) provide evidence that the MAX effect

explains the IVOL puzzle. Bali et al. (2017) show empirically that the MAX effect explains the

beta anomaly. Kumar, Motahari and Taffler (2023) show empirically that the MAX effect helps

explain the mispricing premium. Caglayan, Lawrence and Reyes-Peña (2023) show empirically that

the MAX effect explains the overpricing of left-tail risk. However, the only precedent in empirical

work for max-enhanced and max-weakened portfolios comes from Jacobs, Regele and Weber (2015)

who constructed MAX-enhanced and MAX-weakened versions of momentum. They documented

findings that support the predictions of our model. Jacobs, Regele and Weber (2015) conclude that

their findings “appear to provide a challenge for popular theories of momentum, which are based

on investor overreaction (Daniel, Hirshleifer and Subrahmanyam, 1998), investor underreaction

followed by overreaction (Barberis, Shleifer and Vishny, 1998; Hong and Stein, 1999), agency issues

in delegated fund management (Vayanos and Woolley, 2013), credit risk (Avramov et al., 2007)

or the disposition effect (Grinblatt and Han, 2005).” They remark that their findings “do not fit

neatly within a specific prominent theory of momentum.” However, they did not have a theoretical

model underlying their motivation for MAX-enhanced and MAX-weakened portfolios. We replicate

the findings of Jacobs, Regele and Weber (2015) and demonstrate that they continue to hold in the

modern era of trading technology, an era when the baseline momentum returns have disappeared.

We also document similar findings for the other CAPM anomalies.
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2 The MAX CAPM

We consider a market with two types of traders. Fraction 1 − φ of traders are classical mean-

variance traders who know the true conditional probability of Pt+1. We refer to them as arbi-

trageurs. The remaining fraction φ ∈ (0, 1) are biased traders who overweight the tails of the

return distribution. We refer to them as lottery demand traders as they overweight lottery-like

returns. The setting is a simple two-period market with n risky assets (stocks) and one risk-free

asset (bond). We denote the periods with t and t+1. One share of stock j pays pj,t+1 in the second

period. Let Pt+1 := (p1,t+1, · · · , pn,t+1)
′, with the positive definite conditional covariance matrix

Σt := Var t(Pt+1). Risky assets are in fixed supply, and 1n := (1, 1, · · · , 1)′ denotes the normalized

vector of outstanding shares. The bond has gross risk-free return Rf , which is set by the monetary

authority that controls the supply of the bond.

Our approach extends the classical CAPM by considering a subset of traders who overweight

lottery-like payoffs. In applications, the perceived maximum return could be the asset’s historical

maximum return such as the maximum daily return for an asset over the previous month, used by

Bali, Cakici and Whitelaw (2011).

Our specification for lottery demand traders essentially merges mean-variance analysis with the

NEO-EU model of probability weighting. Under the NEO-EU model (Chateauneuf, Eichberger

and Grant, 2007), agents overweight the extreme payoffs and exhibit a preference toward assets

with high maximum returns. Barberis and Huang (2008) links probability weighting to lottery

demand in the stock market using simulations, while Lockwood et al. (2024) find that NEO-EU

probability weighting best explains their findings on demand elasticities for state-run lotteries. A

novel feature of our approach is to provide a tractable extension of the CAPM which includes

standard mean-variance agents who trade against mispricing (the arbitrageurs), and agents who

deviate from mean-variance efficiency via a textbook probability weighting function (the lottery-

demand traders).

As a simplifying assumption, we assume that the expectation, Et(Rj,t+1), for the lottery demand

traders (for a given asset j in period t) is the same as those of the arbitrageurs. This is a reasonable

simplifying assumption since the lottery demand traders effectively truncate the return distribution

at the asset’s perceived extreme returns which are likely to be sufficiently far out in the tails that
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the truncation leaves the expected return virtually unchanged. Consequently, the preferences of the

lottery demand traders and arbitrageurs only differ in that the former over-weight their perceived

maximum and minimum returns.

Let xj denote the holdings of asset j by the lottery demand traders, where we assume xj ≥ 0

for all j.7 We consider a setting in which lottery demand traders determine their portfolio holdings

according to the preferences in (1):

max
x

n∑
j=1

xj pj,t

(
(1− γ)Et(Rj,t+1) + γ

(
θ Rj,t+1 + (1− θ)Rj,t+1

)
−Rf

)
− ρ

2
x′Σtx. (1)

The perceived maximum return of stock j in period t is Rj,t+1 :=
pj,t+1

pj,t
, where pj,t+1 is the

perceived ceiling price of the asset. The perceived minimum return of stock j is Rj,t+1 :=
p
j,t+1

pj,t
,

where p
j,t+1

is the perceived floor price of the asset.

We denote the vector of perceived ceiling prices with P t+1 := (p1,t+1, · · · , pn,t+1)
′ and the vector

of perceived floor prices with P t+1 := (p
1,t+1

, · · · , p
n,t+1

)′. In (1), θ ∈ (0, 1) reflects the degree of

optimism of the lottery demand traders (the extent to which they overweight the lotterylike return),

while (1− θ) reflects their degree of pessimism (the extent to which they overweight the likelihood

of an extreme negative return such as a crash). Note that θ reflects the direction of the bias of

the lottery demand traders, ranging from 0 (extreme pessimism) to 1 (extreme optimism). In

comparison, γ ∈ (0, 1) reflects their degree of bias (the extent to which they deviate from textbook

mean-variance preferences) ranging from 0 (no bias) to 1 (extreme sensitivity to tail events). Finally,

ρ > 0 reflects the investors’ risk aversion (which is the same for all agents).

The preferences in (1) essentially fuse mean-variance preferences at the heart of the classical

CAPM with (a form of) textbook inverse-S shape probability weighting (Chateauneuf, Eichberger

and Grant, 2007; Wakker, 2010).8 Our specification of lottery demand traders essentially endows

7This assumption is consistent with the prohibitively large costs associated with short selling for individual
investors. Kumar (2009) finds empirically that individual household investors have disproportionately large holdings
of lotterylike stocks, whereas institutional investors have low holdings of such stocks. It thus seems reasonable to
think of the lottery demand traders as representing individual household investors who generally avoid short selling.
The assumption of non-negative holdings for a behavioral agent is also made in the representative agent asset pricing
model in Zimper (2012).

8We make a simplifying assumption similar in spirit to that in Hong and Sraer (2016) in which we only focus on
biased expectations (there is no bias in the variance-covariance matrix). Doing so simplifies the analysis and further
clarifies the main insights of the model. Note also that the preferences in (1) can be viewed as agents who have
correct expectations of both means and variances but also have a concern for robustness, represented by the classical
Hurwicz criterion for robust optimization (Hurwicz, 1951). Under that interpretation, the agents in (1) care about
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them with a NEO-EU probability weighting function of Chateauneuf, Eichberger and Grant (2007),

which leads them to overweight the tails of the return distribution. NEO-EU agents exhibit a

preference for lotterylike stocks with high maximum returns. This property is consistent with

empirical properties of household portfolio choice such as the attraction for household investors to

hold lottery-like stocks (Kumar, 2009; Dimmock et al., 2021).

One could alternatively interpret the setting as fusing the CAPM with a form of the α-maxmin

model of choice under Knightian uncertainty (Ghirardato, Maccheroni and Marinacci, 2004), in

which case γ represents the level of uncertainty. The model reduces to the CAPM when γ = 0

(there is no probability weighting or no uncertainty) or φ = 0 (there are no lottery demand traders).

Importantly, our specification of the lottery demand traders implies that idiosyncratic tail risk

is priced in equilibrium. This property is consistent with the findings of Bégin, Dorion and Gau-

thier (2020) who find empirically that idiosyncratic Gaussian fluctuations in returns are easily

diversifiable and are not priced, but that idiosyncratic tail risk is priced.

To complete the model setup, the mean-variance traders maximize (2).

max
y

n∑
j=1

yj pj,t [Et(Rj,t+1)−Rf ]−
ρ

2
y′Σty. (2)

Let x∗ := (x1, x2, · · · , xn)′ and y∗ := (y1, y2, · · · , yn)′ denote the demand of the lottery demand

traders and the arbitrageurs, respectively. In equilibrium, the market clears and (3) holds:

(1− φ)x∗ + φy∗ = 1n. (3)

The equilibrium of the model is defined as the set of prices Pt = (p1,t, · · · , pn,t)′, and allocations

x∗ and y∗, such that given the prices Pt, and the state variables EtPt+1, Σt, Rf , P t+1, P t+1, the

allocations x∗ and y∗ solve the maximization problems of the lottery demand traders and mean-

variance agents in (1) and (2), and the market clearing condition in (3) holds.

three features of asset returns: expected returns with respect to their prior distribution, risk or dispersion of returns
with respect to their prior, and robustness of returns to a mis-specified prior, where the Hurwicz criterion is robust
to all prior distributions over the same support.
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2.1 Equilibrium Excess Returns

The equilibrium expected excess returns are given in the following proposition. In what follows,

we drop the t subscripts for notational convenience in contexts where no confusion should arise.

PROPOSITION 1. The market with a positive measure φ of lottery demand traders who maxi-

mize (1), a positive measure (1 − φ) of mean-variance traders who maximize (2), and the market

clearing condition (3), has a unique equilibrium if the risk aversion parameter ρ is not too large,

i.e., the inequality (10) in the Appendix is satisfied. The equilibrium expected excess return for asset

j is the following:

E(Rj)−Rf = αj + βj
(
E(RM )−Rf

)
, (4)

where βj :=
Cov(Rj ,RM )
V ar(RM ) , and the CAPM abnormal return αj is given by:

αj :=

(
φγ

1− φγ

)(
θ(βjRM −Rj) + (1− θ)(βjRM −Rj) + (1− βj)Rf

)
, (5)

where, RM :=
∑n

j=1wjRj is the value-weighted market return with weights wj :=
pj∑
i pi

, and simi-

larly, RM :=
∑n

j=1wjRj, and RM :=
∑n

j=1wjRj.

Proof. See the Online Appendix.

Proposition 1 essentially provides a theory for the CAPM alpha (the asset-specific intercept

in a time series regression of the assets’ excess returns against the market excess return) which

identifies variables that should affect an asset’s CAPM abnormal returns. Under Proposition 1, the

CAPM alpha for an asset, j, denoted αj is amplified by the proportion of lottery demand traders,

φ. Further, for stocks with higher maximum returns, the CAPM alpha is more negative.9 More

formally, the model predicts the following properties of CAPM abnormal returns:

COROLLARY 1. (Properties of CAPM abnormal returns) Ceteris paribus, αj is decreasing in

the maximum return of stock j, Rj. Moreover, this decline in αj is larger if the fraction of lottery

demand traders, φ, is high.

9The model also makes predictions regarding the minimum return that are in line with the predictions of tra-
ditional asset pricing models based on disaster risk (Barro, 2009; Wachter, 2013; Barro and Liao, 2021), ambiguity
aversion (Gilboa and Schmeidler, 1989; Hansen and Sargent, 2001; Klibanoff, Marinacci and Mukerji, 2005), and
disappointment aversion (Routledge and Zin, 2010; Schreindorfer, 2020). The more novel theoretical prediction from
the present model’s extension of the CAPM pertains to the right tail. Consequently, we focus on those predictions.
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Corollary 1 provides a formal connection between the MAX effect and the CAPM alpha (ab-

normal returns), demonstrating that the MAX effect directly leads to overpricing. Consequently,

stocks with sufficiently high Rj are overpriced relative to the CAPM (they have αj < 0).

Since the model given by (4) and (5) generalizes the classical CAPM to incorporate the pricing

of a stock’s maximum return, we refer to it as the MAX CAPM.

2.2 Implications for Investor Behavior

In the model, lottery demand investors are attracted toward lotterylike stocks (assets with high

maximum returns), which leads them to under-diversify to enjoy a small chance of a large payoff.

These predictions are supported empirically by Dimmock et al. (2021) who measure the degree

of probability weighting for household investors and document that “higher probability weighting

is associated with owning lottery-type stocks,” and that people with higher probability weighting

tend to under-diversify.

Here we briefly consider the model implications for investor behavior for assets whose perceived

ceiling and floor prices have not changed from the previous period.

COROLLARY 2. For assets whose maximum and minimum prices have not changed:

1. (Trading of assets following an increase in their prices): As the price of an asset increases

toward the perceived ceiling price of the lottery demand traders, the lottery demand traders

lower their holdings, and arbitrageurs increase their holdings. In contrast, as the price de-

creases toward the perceived floor price, lottery demand traders increase their holdings, and

arbitrageurs decrease their holdings.

2. (Trading of assets following an increase in their alphas): Assuming an individual asset has

a negligible effect on the market, ceteris paribus, as the price of an asset increases toward

the perceived ceiling price, the asset’s perceived maximum return decreases, the asset’s alpha

increases, and lottery demand traders sell the asset whereas arbitrageurs buy it.

Proof. See the Online Appendix.

Corollary 2 predicts that biased traders will increasingly sell stocks as their prices increase

toward their perceived ceiling price and will increasingly buy stocks as their prices decrease far
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below the ceiling price. The corollary further predicts that arbitrageurs will do the opposite. In

particular, under Part 2 of the corollary, arbitrageurs trade against mispricing, buying stocks whose

CAPM alphas have increased, whereas lottery demand traders sell those stocks and buy lottery-like

stocks whose prices have decreased far below their perceived ceiling price. Under the model, lottery

demand traders perceive such stocks to have an increased lottery-like return.

Two questions to address in models with behavioral investors are why mispricing is not corrected

and what motivates behavioral investors to trade in the first place, especially if they are on the

losing side of the trades. Regarding the first question, since in the model the arbitrageurs are

risk-averse, their demands are finite so that mispricing is not fully corrected. This is a standard

approach to limiting mispricing correction as noted by Cochrane (2011).10

Regarding the second question, note that both lottery demand traders and arbitrageurs have

plausible motives for trading as they each perceive themselves as “buying low” and “selling high”.

Arbitrageurs buy underpriced stocks and sell overpriced stocks, whereas lottery demand traders

buy stocks with low prices relative to their perceived ceiling price and sell stocks with high prices

relative to their perceived ceiling price.

3 Model Implications for CAPM Anomalies

We focus on six prominent CAPM anomalies in which attraction to lottery-like payoffs provides

a plausible intuitive explanation. These anomalies include (i) the MAX effect (Bali, Cakici and

Whitelaw, 2011) in which stocks with high maximum returns earn low abnormal returns; (ii) the

mispricing premium (Stambaugh and Yuan, 2017) in which stocks with high ex ante abnormal

returns earn high abnormal returns; (iii) momentum (Jegadeesh and Titman, 1993) in which stocks

with high (low) past returns earn high (low) abnormal returns; and three low-risk anomalies: (iv)

the low abnormal returns to stocks with high market beta (the beta anomaly) (Jensen, Black

and Scholes, 1972); (v) the low abnormal returns to stocks with high idiosyncratic volatility (the

idiosyncratic volatility (IVOL) puzzle) (Ang et al., 2006); and (vi) the low abnormal returns to

stocks with high left-tail risk (Atilgan et al., 2020). The low returns to stocks with high systematic

10As Cochrane (2011) remarks, “There are some frictions in many behavioral models, but these are largely sec-
ondary and defensive, to keep risk-neutral “rational arbitrageurs” from coming in and undoing the behavioral biases.
Often, simple risk aversion by the rational arbitrageurs would serve as well.”
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risk, high idiosyncratic risk, or high left-tail risk could plausibly be due to these assets also having

high maximum returns. Similarly, the mispricing premium could be due to overpriced stocks with

high maximum returns. For momentum, loser stocks plausibly have low prices relative to their

ceiling price due to their low past returns, in which case the MAX CAPM predicts that they have

high maximum returns.

The set of six anomalies that we consider is also an important set as it contains many of the

seminal empirical challenges to the predictions of equilibrium asset pricing theory. For instance,

the beta anomaly challenges the prediction of the CAPM that the security market line is upward

sloping. The mispricing premium challenges the prediction of the CAPM that the CAPM alpha is

not significantly different from zero. The idiosyncratic volatility puzzle challenges the prediction

of the CAPM that idiosyncratic risk is not priced, and it challenges the prediction of the Merton

(1987) model that idiosyncratic risk is positively priced. The overpricing of left-tail risk challenges

the prediction of models based on disaster risk (Barro, 2009; Wachter, 2013; Barro and Liao, 2021),

ambiguity aversion (Gilboa and Schmeidler, 1989; Hansen and Sargent, 2001; Klibanoff, Marinacci

and Mukerji, 2005), and disappointment aversion (Routledge and Zin, 2010; Schreindorfer, 2020)

that left-tail risk is positively priced. Momentum challenges the prediction of the efficient market

hypothesis that future abnormal returns are not predictable from past returns. Despite the very

different theoretical predictions these fundamental anomalies challenge, we use the present model

to investigate whether they can be given a unified explanation and a microfoundation.

The following corollary implicates the difference in maximum returns between the short and

long legs of the anomalies as a driver of each anomaly. In this respect, the model predicts that

the MAX effect of Bali, Cakici and Whitelaw (2011) provides a unifying role in helping to explain

these basic CAPM anomalies.

COROLLARY 3. (Implications for CAPM Anomalies): Consider a long-short portfolio that takes

a long position in asset L and a short position in asset S. Under Equations (4) and (5), the CAPM

alpha, αLS, for this portfolio is increasing in φγ
(1−φγ)θ(RS − RL). Further, αLS > 0 if θ(RS − RL)

is sufficiently large (i.e., if inequality (6) holds).

θ(RS −RL) > (βS − βL)(θRM + (1− θ)RM −Rf ) + (1− θ)(RL −RS). (6)
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For the CAPM anomalies that we study, this implies:

1. (MAX Effect) If the long (short) leg asset has low maximum returns, LM (high maximum

returns, HM), the CAPM alpha, αMAX , is increasing in φγ
(1−φγ)θ(RHM −RLM ).

2. (Overpricing of left-tail risk) If the long (short) leg asset has low left-tail risk, LTR (high

left-tail risk, HTR), the CAPM alpha, αMIN , is increasing in φγ
(1−φγ)θ(RHTR −RLTR).

3. (IVOL Premium) If the long (short) leg asset has low idiosyncratic volatility, LV (high id-

iosyncratic volatility, HV), the CAPM alpha, αIV OL, is increasing in φγ
(1−φγ)θ(RHV −RLV ).

4. (Betting-against-Beta Premium) If the long (short) leg asset has low market beta, LB (high

market beta, HB), the CAPM alpha, αBAB, is increasing in φγ
(1−φγ)θ(RHB −RLB).

5. (Mispricing Premium) If the long (short) leg is an underpriced asset, U, (overpriced asset,

O), for which αU > 0 > αO, the CAPM alpha, αUMO, is increasing in φγ
(1−φγ)θ(RO −RU ).

6. (Momentum) If the long (short) leg is a winner asset, W, with a high past return (a loser

asset, L, with a low past return), the CAPM alpha, αWML, is increasing in
φγ

(1−φγ)θ(RL−RW ).

We use the model predictions from Corollary 3 to generate precise testable hypotheses. Note

that for each anomaly, the corollary highlights a role for the difference in maximum returns between

the long and the short leg (a cross-sectional component of the anomalies), and a role for the

proportion of lottery demand traders in the market (a systematic component of the anomalies that

may vary across time). To evaluate the cross-sectional component of the anomalies predicted by

Corollary 3, we form max-enhanced and max-weakened portfolios. Consider a generic long-short

portfolio. A max-enhanced portfolio takes a long position in the subset of long-leg stocks with low

maximum returns and a short position in the subset of short-leg stocks with high maximum returns.

A max-enhanced portfolio is designed to expand the difference in maximum returns (RHTR−RLTR,

RHV − RLV , RHB − RLB, RO − RU , and RL − RW ). Under the MAX CAPM, a max-enhanced

portfolio should strengthen each of these anomalies.

A max-weakened portfolio takes a long position in the subset of long-leg stocks with high

maximum returns and a short position in the subset of short-leg stocks with low maximum returns.

A max-weakened portfolio is designed to shrink the difference in maximum returns between the
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long and short leg assets. Under the MAX CAPM, a max-weakened portfolio should weaken each

of these anomalies.

Our first three hypotheses pertain to the the cross-sectional variation in anomalies.

HYPOTHESIS 1. A max-enhanced version of the MIN, IVOL, BAB, UMO, and WML anomalies

yields CAPM abnormal returns, αMIN , αIV OL, αBAB, αUMO, and αWML, that are positive and

significant.

If the anomalies are driven mainly by the difference in maximum returns, then a max-weakened

version of the anomalies could render the anomalies insignificant.

HYPOTHESIS 2. A max-weakened version of the MIN, IVOL, BAB, UMO, and WML anomalies

yields CAPM abnormal returns, αMIN , αIV OL, αBAB, αUMO, and αWML, that are not significant.

HYPOTHESIS 3. The max-enhanced MIN, IVOL, BAB, UMO, and WML anomalies yield

CAPM abnormal returns, αMIN , αIV OL, αBAB, αUMO, and αWML, that are significantly larger

than those of the corresponding max-weakened anomalies, αMIN , αIV OL, αBAB, αUMO, and αWML.

Our fourth hypothesis pertains to the time series variation in the anomalies.

HYPOTHESIS 4. The max effect and the max-enhanced versions of the anomalies have higher

abnormal returns following periods in which aggregate investor lottery demand is higher.

To evaluate our fourth hypothesis, we use a theory-based index of time variation in lottery

demand from Ghazi et al. (2024a). The index is given by −σt(1 − θt) where σt is a measure

of the conditional market volatility, estimated from a GARCH model, and θt is the measure of

market optimism from Ghazi et al. (2024b) that is estimated from an asset pricing model with a

representative NEO-EU agent. Ghazi et al. (2024a) motivate the index by showing analytically

that the marginal value from participating in the stock market for a NEO-EU investor is increasing

in market optimism, θ, and decreasing in market volatility, σ. A high index value indicates a period

of high investor lottery demand in which lottery demand investors who overweight assets with high

maximum returns have their largest influence on the market. A low index value indicates a period

of low investor lottery demand in which lottery demand investors withdraw from the market. In
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light of this observation, one could view the index −σt(1− θt) as reflecting time variation in φ (the

proportion of lottery demand traders in the market).11

Corollary 3 focuses on a component of anomalies predicted by the MAX CAPM (assets’ maxi-

mum returns) that is absent from traditional asset pricing models. For instance, under the CAPM,

neither the left or right tail is overweighted (beyond standard risk aversion) and in models based

on ambiguity (Gilboa and Schmeidler, 1989; Hansen and Sargent, 2001; Klibanoff, Marinacci and

Mukerji, 2005), disappointment aversion Routledge and Zin (2010); Schreindorfer (2020), or disaster

risk Barro (2009); Wachter (2013); Barro and Liao (2021), only the left tail is overweighted.

Corollary 3 helps unify a variety of existing empirical findings. Part 1 of the corollary (the

MAX effect) is supported empirically by Bali, Cakici and Whitelaw (2011), and Cheon and Lee

(2018). Part 2 of the corollary is supported empirically by Caglayan, Lawrence and Reyes-Peña

(2023) who find that the MAX effect explains the low returns to stocks with low minimum returns.

Part 3 of the corollary is supported empirically by Bali, Cakici and Whitelaw (2011) who finds that

the MAX effect explains the idiosyncratic volatility puzzle.12 Part 4 of the corollary is supported

empirically by Bali et al. (2017) who find that the MAX effect explains the beta anomaly. Part 5

of the corollary is supported empirically by Kumar, Motahari and Taffler (2023) who find that the

MAX effect helps explain the mispricing premium. Part 6 of the corollary is supported empirically

by Jacobs, Regele and Weber (2015) who find that the MAX effect is an important driver of

momentum. One contribution of the present paper is to provide a theory which unifies these

empirical findings by linking the MAX effect to these anomalies.

While prior work has investigated the role of the MAX effect in isolated anomalies, we test

the model predictions using a common stock universe (from CRSP) for all six anomalies. We

conduct our tests excluding microcap stocks as recommended by Hou, Xue and Zhang (2020). We

show in our robustness analyses that results are similar using all stocks. We show that our results

11Note that θt is also expected to drive variation in the weight on the maximum return, θ, relative to the minimum
return, 1−θ. As higher θt is predicted to increase both φ and θ, its predicted effect on CAPM alphas is unambiguous.

12Subsequent work by Hou and Loh (2016) has dismissed the MAX effect as an explanation for the IVOL puzzle
since, although the MAX effect can explain the puzzle, the cross-sectional correlation between a stock’s maximum
daily return and a stock’s idiosyncratic volatility is very high (approximately 0.90). Hou and Loh (2016) argues that
because of this high correlation, the MAX effect does not provide an adequate explanation for the IVOL puzzle. In
our robustness analyses, we use an alternative method for calculating an asset’s maximum return (analogous to how
Atilgan et al. (2020) compute value-at-risk, but applied to the right tail). We show that this alternative measure also
supports the model predictions and it provides perhaps a more satisfactory explanation for the IVOL puzzle since its
cross-sectional correlation with idiosyncratic volatility is substantially lower at 0.64.
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survive limits to arbitrage by restricting the analyses to large cap stocks and to the modern era

of trading technology, starting in 2006 (Chen and Velikov, 2023), in which transaction costs have

declined (Novy-Marx and Velikov, 2016), market efficiency has increased, (Rösch, Subrahmanyam

and Van Dijk, 2017), and many anomalies have disappeared (Chen and Velikov, 2023).

4 Data and Methodology

We obtain data on ordinary common stocks traded on NYSE, AMEX, and NASDAQ from

CRSP for the period of July 1963 to December 2023. We calculate the following characteristics.

Ivol is the idiosyncratic volatility calculated as the standard deviation of residuals from estimating

a regression of daily returns on Fama-French three factors over a month. We calculate Beta using

five years of monthly returns with at least 36 observations (hence, Beta starts in July-1968). Max

is the maximum daily return during a month. Max5, our alternative measure of maximum return is

the 95th percentile of daily returns over the past year. We measure left tail risk, Min, by calculating

the 5% value-at-risk times negative one over the past year. Momentum is the cumulative monthly

return over the past 11 months ending one month prior to each month. We obtain mispricing

measures (Misp, from July-1965 to December-2016) for individual stocks from Robert Stambaugh’s

website. Data on market return and risk-free rate is from Prof. Kenneth French’s webiste.

We construct a baseline portfolio by sorting the stocks in each month into an anomaly quintiles. The

baseline portfolio is a long-short portfolio of stocks in the extreme quintiles that generate a positive

abnormal return according to the literature. To construct enhanced and weakened portfolios, we

first sort stocks into Max quintiles. Within each quintile, we sort the stocks into quintiles for each

anomaly. For the long-leg (short-leg), we buy (sell) stocks in the relevant extreme anomaly quintile

within the bottom (top) Max quintile. For instance, the Ivol -enhanced portfolio buys (sells) stocks

in the bottom (top) Ivol quintile within the bottom (top) Max quintile. We mitigate the effect of

small cap stocks by performing all sorting exercises based on NYSE breakpoints. Furthermore, all

portfolios are value-weighted. In addition, we exclude micro cap stocks in our main analyses. Micro

cap stocks have a market capitalization below the 20th percentile based on NYSE breakpoints.

To evaluate portfolio performance and the predictions of the model, we run a time-series regression

of a long-short portfolio returns on the market excess return. We report the intercept of the
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estimated regression (α) and the coefficent of the market excess return (β). Further, we regress

the residuals on the lagged lottery demand and report the estimated coefficient to evaluate the

predictability of portfolio returns with aggregate lottery demand.

4.1 Summary Statistics

Table 1, Panel A, provides basic summary statistics for the sorting variables used in our analysis

to form the portfolios including the number of stocks, their mean, and standard deviation, and

their first, second, and third quartiles. Panel B displays the cross-sectional correlations between

the sorting variables and is consistent with prior findings, for instance that Max has a high cross-

sectional correlation with Ivol of 0.86 (Bali, Cakici and Whitelaw, 2011; Hou and Loh, 2016).

Table 1. Summary Statistics

(1) (2) (3) (4) (5) (6)

Panel A N Mean STD 25% 50% 75%

Return 1178997 1.8% 13.1% −4.6% 1.1% 7.2%
Ivol 1178962 1.8% 1.3% 1.0% 1.5% 2.2%
Beta 944548 1.12 0.60 0.73 1.06 1.43
Momentum 1117643 0.21 0.69 −0.08 0.12 0.36
Misp 973852 49.14 13.04 39.86 48.47 57.82
Min 1157652 3.5% 1.7% 2.3% 3.1% 4.2%
Max 1178996 5.1% 4.8% 2.6% 3.9% 6.2%
Max5 1157652 3.9% 2.1% 2.5% 3.4% 4.7%

Panel B Return Ivol Beta Momentum Misp Min Max Max5

Return 1
Ivol 0.19 1
Beta 0.03 0.26 1
Momentum 0.00 0.09 0.08 1
Misp −0.01 0.16 0.11 −0.15 1
Min 0.05 0.63 0.43 0.06 0.22 1
Max 0.39 0.86 0.24 0.06 0.13 0.52 1
Max5 0.12 0.64 0.43 0.25 0.18 0.93 0.53 1

This table reports the summary statistics (Panel A) and correlations (Panel B) of the stock level variables. Return

is the monthly stock return. Ivol is the idiosyncratic volatility calculated as the standard deviation of residuals from

estimating a regression of daily returns on Fama-French three factors over a month. Beta is calculated using five

years of monthly returns with at least 36 observations. Max is the maximum daily return during a month. Max5,

our alternative measure of maximum return is the 95th percentile of daily returns over the past year. Min is the 5th

percentile of daily returns over the past year times negative one. Momentum is the cumulative monthly return over

the past 11 months ending one month prior to each month. Misp is the mispricing measure from Robert Stambaugh’s

website. The sample period is July 1963 to December 2023 (July-1968 to December-2023 for Beta, June-1965 to

December-2016 for Misp) and excludes micro cap stocks defined as stocks in the bottom 20th percentile of market

capitalization each month using NYSE breakpoints.
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Table 2 displays summary statistics of the baseline, enhanced, and weakened portfolios used in

our analysis. On a nominal basis, all enhanced portfolios produce higher average returns than their

corresponding baseline and weakened portfolios. We observe generally consistent results using the

Sharpe ratio. In the next section, we compare the performance of these portfolios using the CAPM

model and find empirical support for the model predictions from Section 2.

Table 2. Descriptive Statistics of Anomaly Returns

Baseline Mean Min Max STD SR

IVOL 0.09% −22.16% 22.87% 4.74% 0.07
BAB 0.02% −25.97% 21.55% 5.73% 0.01
WML 0.58% −35.36% 22.58% 5.37% 0.37
UMO 0.54% −12.99% 15.67% 3.23% 0.58
MIN −0.03% −30.44% 25.65% 6.39% −0.02
MAX 0.04% −21.89% 24.16% 4.72% 0.03

Enhanced Mean Min Max STD SR

IVOL 0.38% −36.49% 31.33% 7.44% 0.18
BAB 0.06% −47.86% 28.26% 8.89% 0.02
WML 1.00% −45.25% 30.46% 7.67% 0.45
UMO 0.78% −25.25% 32.48% 6.66% 0.40
MIN 0.21% −48.87% 35.23% 9.57% 0.08

Weakened Mean Min Max STD SR

IVOL −0.09% −17.99% 16.40% 4.29% −0.07
BAB −0.05% −29.87% 16.01% 3.98% −0.05
WML 0.44% −35.60% 38.90% 6.81% 0.23
UMO 0.50% −23.03% 27.24% 4.83% 0.36
MIN −0.18% −15.32% 13.36% 3.48% −0.18

This table reports the descriptive statistics of the baseline, enhanced, and weakened portfolios. STD is the

standard deviation of returns. SR is the annualized Sharpe ratio, calculated as the average returns divided by

the standard deviation of returns for each long-short portfolio times the square root of 12. Baseline portfolios are

constructed by buying (selling) stocks in the top quintile (bottom) of each anomaly. For momentum (WML portfolios),

the trade is reverse. For the enhanced portfolios, the long-leg (short-leg) consists of the stocks in the bottom quintile

of each anomaly within the bottom (top) quintile of maximum return (Max ). For the weakened portfolios, the long-leg

(short-leg) consists of the stocks in the bottom quintile of each anomaly within the top (bottom) quintile of maximum

return (Max ). The corresponding characteristics for the portfolios are from Table 1 and are as follows: idiosyncratic

volatility for IVOL, beta for BAB (bettign against beta), momentum for WML (winners minus losers), mispricing

for UMO (underpriced minus overpriced), minimum return for MIN. The sample period is July 1963 to December

2023 (July-1968 to December-2023 for BAB, June-1965 to January-2017 for UMO) and excludes micro cap stocks

defined as stocks in the bottom 20th percentile of market capitalization each month using NYSE breakpoints. NYSE

breakpoints are used to sort stocks into quintiles of characteristics. All portfolios are value weighted.
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5 Cross-Sectional Variation in Anomalies due to MAX Returns

In this section, we examine the theoretical predictions of the model in the cross-section of stock

returns. In particular, we construct Max-enhanced and Max-weakened portfolios of the anomalies

and test the model predictions in Hypotheses 1 through 3. We then examine the effects of limits

to arbitrage.

5.1 Performance of Baseline Portfolios

We start by constructing baseline portfolios for the six anomalies and examine their performance

relative to the CAPM. Panel A of Table 3 reports the CAPM alpha and beta of each portfolio.

Consistent with the literature, all six anomaly alphas are significant at least at the 0.05 level and

range from monthly values of 0.40% (4.8% annualized) for the MAX effect portfolio to 0.71% (8.52%

annualized) for the mispricing premium (UMO).

5.2 Performance of MAX-Enhanced and MAX-Weakened Portfolios

Table 3 also summarizes the performance of the max-enhanced and max-weakened portfolios

as well as their relative performance for each anomaly. Panel B of Table 3 shows that the monthly

CAPM alphas for the max-enhanced portfolios range from 0.78% (9.36%) annualized for the max-

enhanced BAB portfolio to 1.47% (17.64% annualized) for the max-enhanced momentum portfolio.

These results support Hypothesis 1, documenting that the max-enhanced version of the MIN, IVOL,

BAB, UMO, and WML anomalies yield large positive and significant CAPM abnormal returns.

Panel C of Table 3 shows that the monthly CAPM alphas for the max-weakened portfolios range

from -0.28% (-3.36%) annualized for the max-weakened IVOL portfolio to 0.29% (3.48% annualized)

for the max-weakened UMO portfolio. None of the alphas for the max-weakened portfolios are

significant at the 0.05 level. Only the IVOL premium which becomes negative (reflecting a positive

premium for idiosyncratic risk) is marginally significant at the 0.10 level. These results support

Hypothesis 2, documenting that the max-weakened versions of the MIN, IVOL, BAB, UMO, and

WML anomalies yield insignificant CAPM alphas.

Panel D of Table 3 compares the max-enhanced and max-weakened portfolios for each anomaly.

The table reveals that in each case, the max-enhanced portfolios earn significantly higher CAPM
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Table 3. Performance of Baseline, Enhanced, and Weakened Strategies

Panel A (1) (2) (3) (4) (5) (6)

Baseline IVOL BAB WML UMO MIN MAX

α 0.45∗∗∗ 0.49∗∗∗ 0.68∗∗∗ 0.71∗∗∗ 0.51∗∗ 0.4∗∗

(2.61) (2.70) (3.45) (5.92) (2.48) (2.36)
β −0.63∗∗∗ −0.84∗∗∗ −0.17∗ −0.34∗∗∗ −0.95∗∗∗ −0.64∗∗∗

(−10.75) (−12.22) (−1.79) (−5.84) (−13.99) (−9.59)

N 725 666 725 618 725 725
Adj. R-squared 0.35 0.46 0.02 0.22 0.44 0.37

Panel B

Enhanced IVOL BAB WML UMO MIN

α 0.9∗∗∗ 0.78∗∗∗ 1.47∗∗∗ 1.23∗∗∗ 1.0∗∗∗

(3.47) (2.80) (5.93) (4.41) (3.35)
β −0.92∗∗∗ −1.3∗∗∗ −0.82∗∗∗ −0.89∗∗∗ −1.39∗∗∗

(−8.82) (−12.91) (−6.97) (−9.13) (−13.80)

N 725 666 722 618 725
Adj. R-squared 0.31 0.45 0.23 0.36 0.43

Panel C

Weakened IVOL BAB WML UMO MIN

α −0.28∗ −0.04 0.1 0.29 −0.15
(−1.92) (−0.21) (0.35) (1.57) (−1.23)

β 0.34∗∗∗ −0.03 0.61∗∗∗ 0.4∗∗∗ −0.05
(5.61) (−0.72) (7.37) (5.98) (−1.53)

N 725 666 725 618 725
Adj. R-squared 0.13 0.00 0.16 0.14 0.00

Panel D

Enhanced - Weakened IVOL BAB WML UMO MIN

α 1.19∗∗∗ 0.82∗∗∗ 1.39∗∗∗ 0.93∗∗ 1.16∗∗∗

(3.41) (2.68) (3.49) (2.35) (3.69)

This table reports the performance of the baseline (Panel A), enhanced (Panel B) and weakened (Panel C)

portfolios in Table 2. IVOL represents idiosyncratic volatility anomaly. BAB represents betting against beta. WML

represents momentum. UMO represents the mispricing of Stambaugh and Yuan (2017). MIN represents the left-tail

risk. MAX represents maximum return. α, in percent, is the intercept of regressing portfolio return on market

excess return. β is the coefficient on the market excess return. The sample period is July 1963 to December 2023

(July-1968 to December-2023 for BAB, June-1965 to January-2017 for UMO). The test statistics, in parentheses, are

based on Newey-West standard errors with 12 lags. ***,**, and * represent statistical significance at 1%, 5%, and

10%, respectively.
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alphas than the max-weakened portfolios with the difference ranging between monthly alphas of

0.82% (9.84% annualized) for BAB to 1.39% (16.68% annualized) for momentum. These results

support Hypothesis 3, documenting that the max-enhanced MIN, IVOL, BAB, UMO, and WML

anomalies yield CAPM abnormal returns that are significantly larger than those of the correspond-

ing max-weakened anomalies. Our findings reveal that probability weighting provides a mechanism

by which the standard CAPM anomalies are strengthened (through max-ehnanced portfolios) and

by which they are eliminated (through max-weakened portfolios). The MAX CAPM can thus help

to simultaneously reconcile these systematic deviations from the CAPM.

5.3 Limits to Arbitrage: Performance restricted to Large Cap Stocks

We next consider if the results in the previous subsection are robust to two basic limits to

arbitrage. First, we construct the anomalies restricted to large cap stocks (those with above-

median NYSE market capitalization) which are among the most liquid and easiest to arbitrage. If

the performance of the baseline and enhanced portfolios is driven by limits to arbitrage, one might

expect the CAPM alphas to be eliminated for large cap stocks. In the next subsection, we restrict

the analyses to the modern era of trading technology (which Chen and Velikov (2023) specify as

the era beginning 2006:01). In this recent period, transaction costs have declined (Novy-Marx and

Velikov, 2016), market efficiency has increased (Rösch, Subrahmanyam and Van Dijk, 2017), and

many anomalies have disappeared (Chen and Velikov, 2023).

Table 4 summarizes the performance of the baseline, max-enhanced, and max-weakened port-

folios using all available data for the anomalies restricted to large cap stocks. Panel A reveals that

all six anomalies exist among large cap stocks, earning significant CAPM alphas that range from

35 basis points per month (for IVOL) to 63 basis points per month (for UMO).

Panel B of Table 4 reveals that the max-enhanced versions of BAB, IVOL MIN, UMO, and

WML each earn significant CAPM alphas ranging from 62 basis points per month (for BAB) to 112

basis points per month for WML. This finding further supports Hypothesis 1 that the max-enhanced

portfolios earn positive and significant CAPM alphas.

Panel C of Table 4 documents that the max-weakened versions of BAB, WML, UMO, and MIN

are not significant at the 0.05 level for large cap stocks, while IVOL is significant in the opposite
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direction (i.e., the premium for idiosyncratic risk is positive) for large cap stocks.13

Panel D of Table 4 shows that the max-enhanced portfolios generally outperform the max-

weakened portfolios for large cap stocks. The out performance is economically significant in all

cases (ranging from a difference in alphas of 7.2% (annualized) for UMO to 13.2% (annualized) for

IVOL. The differences are mostly statistically significant.

5.4 Limits to Arbitrage: Performance in the Modern Era of Trading Technology

Following advances in decimalization and online trading in the early 2000’s, trading costs and

associated barriers to arbitrage have fallen. Chen and Velikov (2023) define the modern era of

trading technology as the period beginning January, 2006. They show that many anomalies have

disappeared in the modern era. In this section, we investigate whether our benchmark results

continue to hold when restricting our analysis to the modern era of trading technology.

Table 5 shows the performance of the baseline, enhanced, and weakened strategies in the period

starting 2006:01. Panel A displays the results for the baseline strategies. While the baseline BAB

and momentum strategies have largely disappeared in the modern era (earning insignificant alphas

of 35 basis points per month), the other four baseline strategies earn significant alphas ranging

from 53 basis points per month (4.2% annualized) for IVOL to 72 basis points per month (8.64%

annualized) for MAX and UMO.

Panel B of Table 5 documents that all enhanced versions of the anomalies earn significant alphas

in the modern era, including large alphas for BAB and momentum, despite their disappearance in

the baseline anomalies. In the modern era, the enhanced portfolios earn alphas ranging between

87 basis per month (10.44% annualized for IVOL) to 169 basis points (20.28% annualized) for

momentum.

Panel C of Table 5 helps clarify the disappearance of BAB and momentum as baseline strate-

gies. While the MAX-enhanced versions of these anomalies generate large positive alphas, the

max weakened versions generate large negative alphas. The baseline portfolios conceal this cross-

13The positive pricing of idiosyncratic risk for max-weakened portfolios is consistent with the proposed model since
the behavioral traders overweight both tails of the distribution, and max-weakened portfolios effectively neutralize
the right tail, enabling the effect of the left-tail to become more visible. However, the positive pricing of idiosyncratic
risk is not robust as the statistical significance disappears in the modern era period. Nominally, we do consistently
find that the CAPM alpha for max-weakened IVOL portfolios is negative in every analysis, ranging from -17 basis
points (2.04% annualized) to -36 basis points (-4.32% annualized) for max-weakened IVOL portfolios.
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Table 4. Portfolio Performance: Large Cap Stocks

Panel A (1) (2) (3) (4) (5) (6)

Baseline IVOL BAB WML UMO MIN MAX

α 0.35∗∗ 0.45∗∗∗ 0.53∗∗∗ 0.63∗∗∗ 0.47∗∗ 0.37**
(2.24) (2.62) (3.01) (5.24) (2.43) (2.21)

β −0.58∗∗∗ −0.81∗∗∗ −0.11 −0.31∗∗∗ −0.89∗∗∗ -0.59***
(−10.32) (−11.84) (−1.25) (−5.27) (−13.42) (-9.05)

N 725 666 725 618 725 725
Adj. R-squared 0.35 0.44 0.01 0.19 0.46 0.35

Panel B

Enhanced IVOL BAB WML UMO MIN

α 0.74∗∗∗ 0.62∗∗ 1.12∗∗∗ 1.0∗∗∗ 0.85∗∗∗

(2.95) (2.27) (4.85) (3.64) (3.08)
β −0.87∗∗∗ −1.25∗∗∗ −0.69∗∗∗ −0.81∗∗∗ −1.31∗∗∗

(−8.95) (−12.82) (−6.16) (−8.01) (−13.37)

N 725 666 720 618 725
Adj. R-squared 0.30 0.45 0.20 0.32 0.43

Panel C

Weakened IVOL BAB WML UMO MIN

α −0.36∗∗ 0.07 0.15 0.4∗ −0.19
(−2.24) (0.45) (0.53) (1.95) (−1.51)

β 0.24∗∗∗ −0.03 0.55∗∗∗ 0.42∗∗∗ −0.09∗∗

(4.09) (−0.77) (6.32) (6.11) (−2.31)

N 725 666 720 618 725
Adj. R-squared 0.06 0.00 0.13 0.14 0.01

Panel D

Enhanced - Weakened IVOL BAB WML UMO MIN

α 1.11∗∗∗ 0.55∗ 0.97∗∗∗ 0.6 1.04∗∗∗

(3.24) (1.85) (2.58) (1.50) (3.57)

This table reports the performance of the baseline (Panel A), enhanced (Panel B) and weakened (Panel C)

portfolios in Table 2 for large cap stocks defined as stocks with a market cap above the NYSE median market cap

for each month. Panel D reports the performance of the enhanced minus the weakened portfolio. IVOL represents

idiosyncratic volatility anomaly. BAB represents betting against beta. WML represents momentum. UMO represents

the mispricing Stambaugh and Yuan (2017). MIN represents the left-tail risk. MAX represents maximum return. α,

in percent, is the intercept of regressing portfolio return on market excess return. β is the coefficient on the market

excess return. The sample period is July 1963 to December 2023 (July-1968 to December-2023 for BAB, June-1965

to January-2017 for UMO). The test statistics, in parentheses, are based on Newey-West standard errors with 12

lags. ***,**, and * represent statistical significance at 1%, 5%, and 10%, respectively.
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sectional heterogeneity in the anomalies between max-enhanced and max-weakened versions, giving

the appearance that the anomaly has disappeared.

All of the anomaly alphas are nominally negative in Panel C, consistent with the model’s intu-

ition that max-weakened portfolios effectively neutralize the right tail and instead lead to a focus

on the downside risk of the anomalies which should be compensated with a positive premium (cor-

responding to negative CAPM alphas). As noted by Stambaugh, Yu and Yuan (2015), underpricing

is generally weaker than overpricing since buying is easier than shorting. Consistent with that intu-

ition, our results for weakened portfolios are mostly insignificant and the evidence for underpricing

(e.g., a positive premium for high idiosyncratic volatility or high left tail risk) is not robust in our

data, especially compared to the large and robust effects that we find for overpricing.

Panel D of Table 5 shows that in the modern era there is a notably large gap in the performance

of max-enhanced and max-weakened portfolios. Panel D shows that a portfolio that takes a long

position in the max-enhanced version of an anomaly and shorts the corresponding max-weakened

version earns an alpha ranging between 115 basis points (13.8% annualized) for IVOL to 259 basis

points (31.08% annualized) for momentum. Accordingly, the differences in alphas between the

max-enhanced and max-weakened portfolios in the modern era are all large and significant.

We next consider both limits to arbitrage jointly and investigate whether our results hold for

the anomalies restricted to large cap stocks in the modern eta. The results are shown in Table 6.

Panel A documents that the baseline anomaly alphas are significant except for BAB and WML.

Panel B shows that the max-enhanced IVOL, WML, UMO, and MIN anomalies all generate

large and significant alphas even when restricted to large cap stocks in the modern era, further

supporting Hypothesis 1. This suggests that the performance of the max-enhanced portfolios might

be an equilibrium effect as predicted by the model, as it survives strong market forces that push

prices toward equilibrium. Since markets for large cap stocks in the modern era are characterized

by high competition, low trading costs, and high liquidity, the performance of the max-enhanced

portfolios despite these forces suggests the basic CAPM anomalies have not disappeared. While

the max-enhanced BAB anomaly is not significant despite its large CAPM alpha of 92 basis points

per month, the strategy that takes a long position in max-enhanced BAB and shorts max-weakened

BAB still earns 1.27% per month, significant at the 0.01 level, as shown in Panel D. Panel D of Table

6 further shows that all max-enhanced anomalies generate significantly larger CAPM alphas than
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Table 5. Portfolio Performance in the Modern Era (Post 2005)

Panel A (1) (2) (3) (4) (5) (6)

Baseline IVOL BAB WML UMO MIN MAX

α 0.53∗∗ 0.35 0.35 0.72∗∗∗ 0.64∗∗ 0.72***
(2.41) (0.99) (1.14) (3.52) (2.07) (3.46)

β −0.57∗∗∗ −0.95∗∗∗ −0.45∗∗∗ −0.52∗∗∗ −1.0∗∗∗ -0.65***
(−7.23) (−13.98) (−3.52) (−4.62) (−13.47) (-8.92)

N 215 215 215 132 215 215
Adj. R-squared 0.33 0.47 0.13 0.36 0.45 0.40

Panel B
Enhanced IVOL BAB WML UMO MIN

α 0.87∗∗ 0.96∗∗ 1.69∗∗∗ 1.23∗∗∗ 1.03∗∗

(2.37) (2.03) (3.87) (2.68) (2.02)
β −0.82∗∗∗ −1.38∗∗∗ −1.18∗∗∗ −1.0∗∗∗ −1.46∗∗∗

(−6.24) (−11.97) (−5.66) (−8.40) (−11.52)

N 215 215 215 132 215
Adj. R-squared 0.26 0.45 0.31 0.38 0.38

Panel C
Weakened IVOL BAB WML UMO MIN

α −0.28 −0.45 −0.9∗∗ −0.41∗∗ −0.3
(−1.08) (−1.27) (−2.31) (−1.99) (−1.23)

β 0.46∗∗∗ −0.01 0.52∗∗∗ 0.45∗∗∗ −0.06
(7.83) (−0.09) (7.31) (5.88) (−1.49)

N 215 215 215 132 215
Adj. R-squared 0.23 0.00 0.14 0.20 0.00

Panel D
Enhanced - Weakened IVOL BAB WML UMO MIN

α 1.15∗∗ 1.41∗∗∗ 2.59∗∗∗ 1.65∗∗∗ 1.34∗∗

(2.31) (3.69) (4.85) (3.83) (2.57)

This table reports the performance of the baseline (Panel A), enhanced (Panel B) and weakened (Panel C)

portfolios in Table 2 in the modern era (post 2005). Panel D reports the performance of the enhanced minus the

weakened portfolio. IVOL represents idiosyncratic volatility anomaly. BAB represents betting against beta. WML

represents momentum. UMO represents the mispricing of Stambaugh and Yuan (2017). MIN represents the left-tail

risk. MAX represents maximum return. α, in percent, is the intercept of regressing portfolio return on market

excess return. β is the coefficient on the market excess return. The sample period is January 2006 to December 2023

(January-2006 to January-2017 for UMO). The test statistics, in parentheses, are based on Newey-West standard

errors with 12 lags. ***,**, and * represent statistical significance at 1%, 5%, and 10%, respectively.
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Table 6. Portfolio Performance in the Modern Era: Large Cap Stocks

Panel A (1) (2) (3) (4) (5) (6)

Baseline IVOL BAB WML UMO MIN MAX

α 0.6∗∗ 0.29 0.54 0.82∗∗∗ 0.74∗∗ 0.67***
(2.43) (0.73) (1.58) (3.73) (2.33) (3.14)

β −0.63∗∗∗ −0.98∗∗∗ −0.61∗∗∗ −0.54∗∗∗ −1.07∗∗∗ -0.68***
(−5.56) (−13.75) (−4.11) (−4.80) (−13.45) (-8.39)

N 215 215 215 132 215 215
Adj. R-squared 0.30 0.45 0.20 0.37 0.42 0.37

Panel B
Enhanced IVOL BAB WML UMO MIN

α 0.89∗∗ 0.92 1.31∗∗ 1.34∗∗∗ 1.38∗∗

(1.98) (1.56) (2.36) (3.18) (2.53)
β −0.7∗∗∗ −1.43∗∗∗ −1.28∗∗∗ −0.98∗∗∗ −1.63∗∗∗

(−4.77) (−9.52) (−6.15) (−9.11) (−10.44)

N 215 215 215 132 215
Adj. R-squared 0.17 0.40 0.26 0.38 0.35

Panel C
Weakened IVOL BAB WML UMO MIN

α −0.17 −0.35 −0.68∗∗ −0.08 −0.27
(−0.68) (−0.89) (−2.06) (−0.24) (−1.35)

β 0.48∗∗∗ −0.06 0.44∗∗∗ 0.31∗∗∗ −0.09
(6.46) (−0.56) (6.27) (3.27) (−1.58)

N 215 215 215 132 215
Adj. R-squared 0.23 0.00 0.10 0.12 0.01

Panel D
Enhanced - Weakened IVOL BAB WML UMO MIN

α 1.06∗ 1.27∗∗∗ 1.99∗∗∗ 1.42∗∗ 1.66∗∗∗

(1.85) (2.93) (3.27) (2.55) (2.86)

This table reports the performance of the baseline (Panel A), enhanced (Panel B) and weakened (Panel C)

portfolios in Table 2 in the modern era (post 2005) for large cap stocks defined as stocks with a market cap above the

NYSE median market cap for each month. Panel D reports the performance of the enhanced minus the weakened

portfolio. IVOL represents idiosyncratic volatility anomaly. BAB represents betting against beta. WML represents

momentum. UMO represents the mispricing of Stambaugh and Yuan (2017). MIN represents the left-tail risk. MAX

represents maximum return. α, in percent, is the intercept of regressing portfolio return on market excess return. β

is the coefficient on the market excess return. The sample period is January 2006 to December 2023 (January-2006

to January-2017 for UMO). The test statistics, in parentheses, are based on Newey-West standard errors with 12

lags. ***,**, and * represent statistical significance at 1%, 5%, and 10%, respectively.
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the corresponding max-weakened portfolios, providing further support for hypothesis 3. As before,

the CAPM alphas for the enhanced-minus-weakened strategies is economically large, ranging from

1.06% per month for IVOL to 1.99% percent per month for momentum.

6 Time Variation in Anomalies due to Lottery Demand

We have thus far focused on the model prediction that the CAPM alphas are increasing in

the difference in maximum returns between the short and long legs of the anomalies. when this

difference is sufficiently large such that the CAPM alphas are positive, as one would expect for the

max-enhanced portfolios, then the model predicts that the alphas are amplified by the proportion

of lottery demand traders in the market. We now turn to this prediction which is the subject of

our Hypothesis 4.

To measure time-variation in lottery demand, we use the measure of speculative impact from

Ghazi et al. (2024). That paper shows theoretically that the marginal value from participating in

the stock market for a representative lottery demand trader (modeled as an investor with NEO-

EU probability weighting) is increasing in the relative weight on the market’s perceived maximum

return (the equivalent of our θ parameter) and decreasing in market volatility. That is, lottery

demand is predicted to be stronger in markets with high optimism toward lottery-like returns

during calm periods. They use their theoretical analysis to motivate the measure, −q̂(1 − θ̂), as

a measure of aggregate lottery demand, where θ̂ is the measure of market optimism (the weight

on the perceived market maximum return) from Ghazi, Schneider and Strauss (2024) estimated

from a model with a representative NEO-EU investor, and q̂ is their series of market volatility

estimated from a GARCH model. Note that this measure which they refer to as speculative impact

is increasing in θ̂, and it is decreasing in q̂. Ghazi et al. (2024) show using predictive regressions

that the measure predicts time variation in the raw returns of the MAX, IVOL, WML, and UMO

anomalies. In this section, we apply the speculative impact measure as a theory-based proxy for

aggregate lottery demand to test if it predicts time variation in the CAPM alphas of these baseline

anomalies as well as for the alphas of the max-enhanced and max-weakened versions and for those

of the BAB and MIN anomalies.

The results are presented in Table 7. Panel A of the table shows that the measure of aggregate

28



lottery demand positively predicts the CAPM residuals (i.e., the CAPM alphas) for each of the

six baseline anomalies. Panel B shows that the measure positively predicts each of the enhanced

anomalies. These findings support the predictions of the theory (and Hypothesis 4) that the

anomalies are amplified by lottery demand (providing the CAPM alphas are initially positive).

Since the max-weakened versions do not generally have CAPM alphas that are significantly greater

than zero, we do not expect lottery demand to amplify those anomalies, and generally the measure

does not predict the weakened anomalies, except for UMO (with a lower t-statistic compared to the

enhanced version). In our robustness analyses, we show that the results in Table 7 are not subsumed

by market sentiment (the Baker and Wurgler (2006) sentiment index) or by market volatility (the

measure q̂ by itself).

7 Additional Analyses

In this section, we perform three sets of additional analyses: (1) We investigate if our results

hold using an alternative method for computing Max (analogous to how we computed Min, based

on value-at-risk (Atilgan et al., 2020) but applied to the right tail); (2) We investigate if our results

for enhanced and weakened portfolios hold when using the full CRSP universe of stocks (including

microcaps); (3) We investigate if our results for time variation in lottery demand are subsumed by

market sentiment or market volatility. In each case, we find that our results are robust and in line

with the predictions of the model.

7.1 The MAX Effect as an Explanation for the IVOL Puzzle

Although the MAX effect has been used as an explanation for the IVOL puzzle (Bali, Cakici and

Whitelaw, 2011), Hou and Loh (2016) argues that the MAX effect does not provide a valid empirical

explanation for the IVOL puzzle. The key issue as noted by Hou and Loh (2016) is that Max and

Ivol have a high correlation in the cross-section which they noted was near 0.90 and which is 0.86 in

our data as shown in Table 1. Hou and Loh (2016) argues that this very high correlation indicates

that Max is just a proxy for Ivol. The MAX effect still provides a conceptual explanation for IVOL

(since Max stocks are plausibly overvalued due to lottery demand, and high Ivol stocks naturally

have higher maximum returns than low Ivol stocks). However, the high collinearity between Max
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Table 7. Predicting Portfolio Performance with Lottery Demand

Panel A (1) (2) (3) (4) (5) (6)

Baseline IV OLt+1 BABt+1 WMLt+1 UMOt+1 MINt+1 MAXt+1

−q̂t(1− θ̂t) 0.74∗∗∗ 0.67∗ 1.18∗∗ 0.49∗∗∗ 0.62∗∗ 0.66∗∗∗

(2.68) (1.73) (2.23) (2.82) (2.14) (3.27)

N 198 198 198 126 198 198
Adj. R-squared 0.05 0.02 0.06 0.04 0.02 0.04

Panel B
Enhanced IV OLt+1 BABt+1 WMLt+1 UMOt+1 MINt+1

−q̂t(1− θ̂t) 1.14∗∗∗ 0.88∗ 1.75∗∗∗ 1.27∗∗∗ 1.52∗∗∗

(2.83) (1.86) (2.65) (3.58) (3.21)

N 198 198 198 126 198
Adj. R-squared 0.04 0.02 0.06 0.08 0.04

Panel C
Weakened IV OLt+1 BABt+1 WMLt+1 UMOt+1 MINt+1

−q̂t(1− θ̂t) −0.08 0.29 0.35 0.46∗∗ 0.13
(−0.37) (1.01) (1.09) (2.52) (0.51)

N 198 198 198 126 198
Adj. R-squared −0.005 0.000 0.000 0.017 −0.003

This table reports the performance predictability of baseline (Panel A), enhanced (Panel B), and weakened (Panel

C) portfolios in Table 2 with a measure of aggregate lottery demand (−q̂(1 − θ̂)) from Ghazi et al. (2024). First,

portfolio returns are regressed on market excess return. The residuals of this regression are regressed on the lagged

lottery demand. The second estimated regression is reported. IVOL represents idiosyncratic volatility anomaly. BAB

represents betting against beta. WML represents momentum. UMO represents the mispricing of Stambaugh and

Yuan (2017). MIN represents the left-tail risk. MAX represent maximum return. The sample period is July 2006 to

December 2022 (July-2006 to January-2017 for UMO). The test statistics, in parentheses, are based on Newey-West

standard errors with 12 lags. ***,**, and * represent statistical significance at 1%, 5%, and 10%, respectively.
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and Ivol makes this prediction difficult to test.

In this section, we introduce an alternative measure for Max that is analogous to how Atilgan

et al. (2020) compute Min using value-at-risk, except that we apply the method to the right tail.

Under this alternative measure, MAax5, the perceived maximum return is calculated as the highest

5% of return observations over the past year.14 The Max5 measure has a substantially lower

correlation with Ivol of 0.64 as shown in Table 1, revealing that the two series are clearly not

identical. Since the theory in Section 2 includes an important role for Max but does not specify

how Max should be calculated empirically, either the Max measure in our main analyses based on

Bali, Cakici and Whitelaw (2011) or the Max measure in this section, based on Atilgan et al. (2020)

are valid measures that can be used to test the theoretical predictions. The natural question that

arises is whether Max5 also works in explaining the CAPM anomalies. We find that it does.

Table 8 presents the performance of max-enhanced and max-weakened portfolios constructed

using the Max5 measure instead of Max. Panel A shows that all max-enhanced portfolios earn

positive and significant alphas ranging from 0.65% (7.8% annualized) for BAB to 1.35% (16.2% an-

nualized) for momentum, supporting Hypothesis 1. Panel B shows that none of the max-weakened

portfolios earn significant alphas which range from -0.25% per month for IVOL to 0.14% per month

for UMO, supporting Hypothesis 2. Panel C shows that each of the max-enhanced portfolios earns

a significantly higher alpha than the corresponding max-weakened portfolio, supporting Hypoth-

esis 3. As the the max-enhanced IVOL earns a significant annualized alpha of 11.04%, while the

max-weakened IVOL earns an insignificant alpha, we find that the Max5 measure helps explain

how to strengthen or eliminate the IVOL puzzle. This observation holds even though Max5 is

substantially less correlated with Ivol than Max.

7.2 Performance using All CRSP Stocks

Hou, Xue and Zhang (2020) show that many asset pricing anomalies disappear after excluding

microcap stocks (those in the bottom 20% of NYSE market capitalization). To ensure that our

results are not driven by microcap stocks, all of our analyses thus far have excluded microcap

stocks. Since microcap stocks do comprise a substantial portion of the total number of firms in

14In an unreported analysis, we find very similar results for both Max and Min if they are computed as the highest
1% of return observations instead of the highest 5%.
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Table 8. Enhanced and Weakened Portfolios Using an Alternative Measure of Maximum Return

Panel A (1) (2) (3) (4) (5)

Enhanced IVOL BAB WML UMO MIN

α 0.92∗∗∗ 0.65∗∗ 1.35∗∗∗ 1.33∗∗∗ 1.05∗∗∗

(3.23) (2.22) (4.94) (4.52) (3.51)
β −1.1∗∗∗ −1.32∗∗∗ −1.04∗∗∗ −1.06∗∗∗ −1.42∗∗∗

(−10.79) (−12.79) (−10.04) (−10.79) (−14.00)

N 725 666 720 618 725
Adj. R-squared 0.35 0.46 0.30 0.42 0.43

Panel B

Weakened IVOL BAB WML UMO MIN

α −0.25 −0.11 0.13 0.14 0.1
(−1.18) (−0.49) (0.46) (0.54) (0.56)

β 0.71∗∗∗ 0.38∗∗∗ 0.81∗∗∗ 0.8∗∗∗ 0.44∗∗∗

(10.14) (8.00) (10.53) (10.05) (8.17)

N 725 666 724 618 725
Adj. R-squared 0.27 0.12 0.23 0.29 0.17

Panel C
Enhanced - Weakened IVOL BAB WML UMO MIN

α 1.18∗∗∗ 0.75∗ 1.24∗∗∗ 1.19∗∗ 0.96∗∗

(2.68) (1.94) (2.82) (2.40) (2.30)

This table reports the performance of the enhanced (Panel A) and weakened (Panel B) portfolios in Table 2 using

an alternative measure of maximum return defined as the 95th percentile of daily returns over the past year. Panel

C reports the performance of the enhanced minus the weakened portfolio. IVOL represents idiosyncratic volatility

anomaly. BAB represents betting against beta. WML represents momentum. UMO represents the mispricing of

Stambaugh and Yuan (2017). MIN represents the left-tail risk. MAX represents maximum return. α, in percent, is

the intercept of regressing portfolio return on market excess return. β is the coefficient on the market excess return.

The sample period is July 1963 to December 2023 (July-1968 to December-2023 for BAB, June-1965 to January-2017

for UMO). The test statistics, in parentheses, are based on Newey-West standard errors with 12 lags. ***,**, and *

represent statistical significance at 1%, 5%, and 10%, respectively.
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the CRSP universe, we investigate in this section whether our results continue to hold if all CRSP

stocks on the NYSE, NASDAQ, and AMEX exchanges (including microcaps) are included.

The results are shown in Table 9. Panel A confirms that the baseline anomalies exist when

including all stocks as each of the CAPM alphas are significant. Panel B shows that the alphas of

all max-enhanced portfolios are significant, supporting Hypothesis 1. Panel C shows that none of

the max-weakened alphas are significant at the 0.05 level (with only the UMO alpha being significant

at the 0.10 level), supporting Hypothesis 2. Panel D shows that each of the max-enhanced alphas

is significantly larger than the corresponding max-weakened alpha, supporting Hypothesis 3.

7.3 Time Variation in Lottery Demand versus Sentiment

We next investigate whether the lottery demand results from Section 6 are explained by market

sentiment. We run the same regressions as in Table 7 except that we now control for the Baker and

Wurgler (2006) market sentiment index. The results are shown in Table 10. The table reveals that

our measure for aggregate lottery demand continues to predict all six baseline anomalies (in Panel

A) and all enhanced portfolios (in Panel B) in the presence of sentiment. In contrast, sentiment is

only significant for BAB anomaly, and any predictive power of sentiment for the other anomalies

is subsumed by the measure for aggregate lottery demand.

In one further robustness check, we investigate whether the lottery demand results from Section

6 can be explained by market volatility, q̂, alone. We run analogous regressions controlling for q̂.

The results are shown in Table 11. In the presence of q̂, which is also a component of our measure

for aggregate lottery demand, the measure for aggregate lottery demand remains significant for five

of the six baseline anomalies (all except forBAB), as shown in Panel A. In Panel B, we find that

the measure for aggregate lottery demand remains significant in predicting the enhanced versions

of all anomalies except for BAB. Although our measure does not predict BAB when controlling for

q̂, the BAB coefficient for q̂ is also not significant. In contrast, the coefficient on q̂ is only significant

for UMO. We conclude that the performance of the measure of aggregate lottery demand is not

subsumed by market sentiment or market volatility.
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Table 9. Portfolio Performance: All Stocks

Panel A (1) (2) (3) (4) (5) (6)

Baseline IVOL BAB WML UMO MIN MAX

α 0.54∗∗∗ 0.42∗∗ 0.8∗∗∗ 0.76∗∗∗ 0.59∗∗∗ 0.46∗∗

(2.87) (2.18) (4.18) (6.12) (2.65) (2.53)
β −0.67∗∗∗ −0.86∗∗∗ −0.26∗∗ −0.34∗∗∗ −0.97∗∗∗ −0.67∗∗∗

(−9.88) (−12.31) (−2.56) (−5.87) (−12.65) (−9.60)

N 725 666 725 618 725 725
Adj. R-squared 0.32 0.45 0.04 0.22 0.41 0.35

Panel B

Enhanced IVOL BAB WML UMO MIN

α 1.11∗∗∗ 0.8∗∗∗ 1.69∗∗∗ 1.47∗∗∗ 1.29∗∗∗

(3.77) (2.61) (5.74) (5.16) (3.71)
β −0.85∗∗∗ −1.32∗∗∗ −0.9∗∗∗ −0.9∗∗∗ −1.39∗∗∗

(−7.63) (−12.57) (−6.98) (−9.34) (−10.96)

N 725 666 725 618 725
Adj. R-squared 0.23 0.43 0.20 0.36 0.35

Panel C

Weakened IVOL BAB WML UMO MIN

α −0.2 −0.01 0.08 0.34∗ −0.09
(−1.30) (−0.06) (0.29) (1.75) (−0.73)

β 0.35∗∗∗ −0.05 0.59∗∗∗ 0.41∗∗∗ −0.07∗∗

(5.77) (−1.04) (6.81) (5.75) (−1.97)

N 725 666 725 618 725
Adj. R-squared 0.13 0.00 0.15 0.13 0.01

Panel D
Enhanced - Weakened IVOL BAB WML UMO MIN

α 1.31∗∗∗ 0.81∗∗ 1.62∗∗∗ 1.13∗∗∗ 1.38∗∗∗

(3.40) (2.52) (3.67) (2.72) (3.76)

This table reports the performance of the baseline (Panel A), enhanced (Panel B) and weakened (Panel C)

portfolios in Table 2 for all stocks without excluding micro caps. Panel D reports the performance of the enhanced

minus the weakened portfolio. IVOL represents idiosyncratic volatility anomaly. BAB represents betting against

beta. WML represents momentum. UMO represents the mispricing of Stambaugh and Yuan (2017). MIN represents

the left-tail risk. MAX represents maximum return. α, in percent, is the intercept of regressing portfolio return on

market excess return. β is the coefficient on the market excess return. The sample period is July 1963 to December

2023 (July-1968 to December-2023 for BAB, June-1965 to January-2017 for UMO). The test statistics, in parentheses,

are based on Newey-West standard errors with 12 lags. ***,**, and * represent statistical significance at 1%, 5%,

and 10%, respectively.
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Table 10. Predicting Portfolio Performance with Lottery Demand: Controlling for Sentiment

Panel A (1) (2) (3) (4) (5) (6)

Baseline IV OLt+1 BABt+1 WMLt+1 UMOt+1 MINt+1 MAXt+1

−q̂t(1− θ̂t) 0.65∗∗ 0.76∗ 1.38∗∗ 0.7∗∗ 0.55∗ 0.61∗∗∗

(2.12) (1.86) (2.49) (2.00) (1.65) (2.74)
BWt 0.0 −0.0 −0.01∗∗ −0.01 0.0 0.0

(0.97) (−1.07) (−2.00) (−0.85) (0.69) (0.71)

N 198 198 198 126 198 198
Adj. R-squared 0.05 0.02 0.06 0.04 0.01 0.03

Panel B
Enhanced IV OLt+1 BABt+1 WMLt+1 UMOt+1 MINt+1

−q̂t(1− θ̂t) 0.91∗∗ 1.16∗∗ 1.87∗∗∗ 1.82∗∗∗ 1.23∗∗

(2.04) (2.32) (2.66) (3.18) (2.26)
BWt 0.01 −0.01∗∗∗ −0.01 −0.03 0.01

(1.56) (−2.59) (−1.09) (−1.21) (1.45)

N 198 198 198 126 198
Adj. R-squared 0.04 0.02 0.06 0.09 0.04

Panel C
Weakened IV OLt+1 BABt+1 WMLt+1 UMOt+1 MINt+1

−q̂t(1− θ̂t) −0.19 0.47 0.55∗ 0.6∗ 0.16
(−0.78) (1.44) (1.71) (1.65) (0.59)

BWt 0.01 −0.01∗∗ −0.01∗ −0.01 −0.0
(1.21) (−2.23) (−1.70) (−0.62) (−0.38)

N 198 198 198 126 198
Adj. R-squared −0.004 0.006 0.002 0.011 −0.008

This table reports the performance predictability of baseline (Panel A), enhanced (Panel B), and weakened

(Panel C) portfolios in Table 2 with a measure of aggregate lottery demand (−q̂(1 − θ̂), from (Ghazi et al., 2024))

controlling for the market sentiment First, portfolio returns are regressed on market excess return. The residuals of

this regression are regressed on the lagged lottery demand and the lagged sentiment measure of Baker and Wurgler

(2006), BW. The second estimated regression is reported. IVOL represents idiosyncratic volatility anomaly. BAB

represents betting against beta. WML represents momentum. UMO represents the mispricing of Stambaugh and

Yuan (2017). MIN represents the left-tail risk. MAX represents maximum return. The sample period is July 2006 to

December 2022 (July-2006 to January-2017 for UMO). The test statistics, in parentheses, are based on Newey-West

standard errors with 12 lags. ***,**, and * represent statistical significance at 1%, 5%, and 10%, respectively.
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Table 11. Predicting Performance with Lottery Demand: Controlling for Market Volatility

Panel A (1) (2) (3) (4) (5) (6)

Baseline IV OLt+1 BABt+1 WMLt+1 UMOt+1 MINt+1 MAXt+1

−q̂t(1− θ̂t) 1.0∗∗ 0.21 1.41∗ 1.4∗∗∗ 1.02∗∗ 0.92∗∗

(2.07) (0.48) (1.92) (3.91) (2.16) (2.29)
q̂t 0.21 −0.36 0.18 0.77∗∗∗ 0.31 0.2

(0.96) (−1.06) (0.51) (3.70) (1.26) (0.91)

N 198 198 198 126 198 198
Adj. R-squared 0.05 0.02 0.06 0.08 0.01 0.04

Panel B
Enhanced IV OLt+1 BABt+1 WMLt+1 UMOt+1 MINt+1

−q̂t(1− θ̂t) 1.79∗∗ 0.5 2.8∗∗∗ 2.24∗∗∗ 2.0∗∗

(2.44) (0.66) (2.76) (4.17) (2.47)
q̂t 0.51 −0.29 0.83 0.82∗∗ 0.38

(1.41) (−0.75) (1.64) (2.07) (0.74)

N 198 198 198 126 198
Adj. R-squared 0.04 0.01 0.06 0.09 0.03

Panel C
Weakened IV OLt+1 BABt+1 WMLt+1 UMOt+1 MINt+1

−q̂t(1− θ̂t) 0.13 −0.9 −0.19 0.53 0.38
(0.29) (−1.20) (−0.34) (1.59) (0.79)

q̂t 0.17 −0.94 −0.42 0.06 0.2
(0.49) (−1.53) (−0.89) (0.22) (0.68)

N 198 198 198 126 198
Adj. R-squared −0.008 0.032 −0.001 0.009 −0.006

This table reports the performance predictability of baseline (Panel A), enhanced (Panel B), and weakened (Panel

C) portfolios in Table 2 with a measure of aggregate lottery demand (−q̂(1− θ̂), from (Ghazi et al., 2024)) controlling

for market volatility. First, portfolio returns are regressed on market excess return. The residuals of this regression

are regressed on the lagged lottery demand and the lagged market volatility form a GARCH model. The second

estimated regression is reported. IVOL represents idiosyncratic volatility anomaly. BAB represents betting against

beta. WML represents momentum. UMO represents the mispricing of Stambaugh and Yuan (2017). MIN represents

the left-tail risk. MAX represent maximum return. The sample period is July 2006 to December 2022 (July-2006 to

January-2017 for UMO). The test statistics, in parentheses, are based on Newey-West standard errors with 12 lags.

***,**, and * represent statistical significance at 1%, 5%, and 10%, respectively.

8 Conclusion

In this paper, we have shown that extending the CAPM through probability weighting function

leads to a tractable and transparent representation of asset prices and the CAPM alpha. The

specific prediction that deviations from the CAPM are strengthened by max-enhanced portfolios

and weakened by max-weakened portfolios provides a new theoretical explanation for major CAPM
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anomalies, including anomalies that prior theoretical work has had difficulty explaining using very

different approaches. For instance, the only prior study to directly investigate max-enhanced and

max-weakened portfolios is Jacobs, Regele and Weber (2015) who did so with regard to momentum.

They found that a max- weakened (max-enhanced) momentum strategy has lower (higher) momen-

tum returns. Jacobs, Regele and Weber (2015) conclude that their findings “appear to provide a

challenge for popular theories of momentum, which are based on investor overreaction (Daniel,

Hirshleifer and Subrahmanyam, 1998), investor underreaction followed by overreaction (Barberis,

Shleifer and Vishny, 1998; Hong and Stein, 1999), agency issues in delegated fund management

(Vayanos and Woolley, 2013), credit risk (Avramov et al., 2007) or the disposition effect (Grinblatt

and Han, 2005).” They remark that their findings “do not fit neatly within a specific prominent

theory of momentum.” However, their findings provide support for the momentum premium under

the MAX-CAPM. More broadly, existing theoretical models traditionally emphasize the left-tail

(as in models based on disaster risk, ambiguity aversion, or disappointment aversion), and so are

unable to explain the anomalies studied here which are driven by agents overweighting the right

tail.

Probability weighting models have shown promise in explaining financial market behavior at

the level of individual investors and at the level of the aggregate market, with recent work turning

to its implications for the cross-section. Our analysis establishes the existence and uniqueness of

the equilibrium in a market with heterogeneous traders including some textbook mean-variance

arbitrageurs and some lottery demand traders with a textbook probability weighting function. The

model provides a microfoundation and unifying role for the MAX effect in explaining central CAPM

anomalies and may serve to help bridge the gap between rational and behavioral theories of asset

prices.
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Appendix. Proofs

Proof of Proposition 1:

First, we start with the existence and uniqueness of the equilibrium. The mean-variance investors

solve the problem in (2), which can be written as

max
y

y′
(
EtPt+1 −RfPt

)
− ρ

2
y′Σ y.

Using vector differentiation rules ∂
∂y (y

′e) = e, and ∂
∂y (y

′Σy) = 2Σy, the first-order condition of the

above maximization yields

y∗(Pt) = ρ−1Σ−1
(
EtPt+1 −RfPt

)
. (7)

Note that y∗(Pt) is the unique maximizer of the problem in (2) since Σ is positive definite, and

hence, the target function is strictly concave in y. Moreover, since Σ−1 is also positive definite,

y∗(Pt) is decreasing in Pt, and hence, it is a proper (asset) demand function of the mean-variance

agents.15

Similarly, the optimization problem of the noise traders in (1) can be written as

max
x

x′
(
(1− γ)EtPt+1 + γ

(
θP t+1 + (1− θ)P t+1

)
−RfPt

)
− ρ

2
x′Σx,

which is strictly concave in x, and its first-order condition yields the following unique maximizer,

i.e., noise traders’ asset demand:

x∗(Pt) = ρ−1Σ−1
(
(1− γ)EtPt+1 + γ

(
θP t+1 + (1− θ)P t+1

)
−RfPt

)
. (8)

Finally, using the market clearing condition, φx∗(Pt) + (1− φ)y∗(Pt) = 1n, we have:

(1− φ)EtPt+1 + φ
(
(1− γ)EtPt+1 + γ

(
θP t+1 + (1− θ)P t+1

))
− PtRf = ρΣ1n,

15To see that Σ−1 is positive definite, i.e., z′Σ−1z > 0 for any n-vector z, define w := Σ−1z, which exists because
Σ is positive definite and hence, invertible. Thus, z = Σw, and z′Σ−1z = w′Σ′Σ−1Σw = w′Σw > 0, where we also
used the fact a the real positive definite matrix is symmetric.
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which can be immediately solved for Pt as follows:

Pt = R−1
f

(
(1− φγ)EtPt+1 + φγ

(
θP t+1 + (1− θ)P t+1

)
− ρΣ1n

)
. (9)

Note that the right-hand side only contains the states variables, and Pt is the unique vector that

solves the market-clearing condition. However, we still need to make sure that Pt ≫ 0, i.e., Pt must

be (element-wise) strictly positive. Specifically, Pt ≫ 0 is achieved if

ρ1n ≪ Σ−1
(
(1− φγ)EtPt+1 + φγ

(
θP t+1 + (1− θ)P t+1

))
. (10)

Thus, ρ must be smaller than the minimum of the elements of the vector on the right-hand side of

(10), which completes the proof of existence and uniqueness of the equilibrium.

Next, we derive the expression of excess returns. The expressions of x∗ and y∗ as solutions to

investor problems in (1) and (2) are derived in (7) and (8), respectively. For later calculations in

this proof, it is useful to rewrite x∗ as the following:

x∗ = ρ−1Σ−1
(
(1− γ)EtPt+1 +AtPt − PtRf

)
,

where At is the n×n diagonal matrix with the (j, j) element aj,t := γ
(
θRj,t+1 + (1− θ)Rj,t+1

)
. As

before, substituting x∗ and y∗ in the market clearing condition, φx∗ + (1− φ)y∗ = 1n, yields:

φAtPt + (1− φγ)EtPt+1 − PtRf = ρΣ1n,

which we can rearrange to express the equilibrium price as follows.

(
RfI − φAt

)
Pt = (1− φγ)EtPt+1 − ρΣ1n,

where I is the n × n identity matrix. Writing the above in terms of the j’th stock and dividing

through by pj,t, we have

(1− φγ)Et(Rj,t+1)−Rf = −φaj,t + ρ
1

pj,t
e′jΣ1n, (11)
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where ej is the unit vector with a one in position j and zeros elsewhere, and e′j selects the j’th row

when left-multiplied. Replacing Σ in 1
pj,t

e′jΣ1n with its definition, we have

1

pj,t
e′jΣ1n =

1

pj,t
e′jEt

(
(Pt+1)(Pt+1 − EtPt+1)

′)1n
= Et

(pj,t+1

pj,t
(Pt+1 − EtPt+1)

′
)
1n

= Covt
(
Rj,t+1, P

′
t+11n

)
.

Next, note that for the market return, we have RM,t+1 =
∑n

j=1 pj,t+1∑n
i=1 pi,t

=
∑n

j=1Rj,t+1
pj,t∑n
i=1 pi,t

, and

thus, RM,t+1 =
∑n

j=1wj,tRj,t+1, with weights wj,t :=
pj,t∑n
i=1 pi,t

. Combining this with the above

expression for 1
pj,t

e′jΣ1n, we have

1

pj,t
e′jΣ1n = Covt

(
Rj,t+1, P

′
t+11n

)
= Covt

(
Rj,t+1,

n∑
j=1

pj,t+1

pj,t
pj,t

)
= Covt

(
Rj,t+1,

n∑
j=1

Rj,t+1wj,t

) n∑
i=1

pi,t,

and thus, we have 1
pj,t

e′jΣ1n = Covt
(
Rj,t+1, RM,t+1

)
P ′
t1n, and we can write (11) as the following

(1− φγ)Et(Rj,t+1)−Rf = −φaj,t + ρCovt(Rj,t+1, RM,t+1)P
′
t1n. (12)

Multiplying the above equation by wj,t and summing over j we find

(1− φγ)Et(RM,t+1)−Rf = −φaM,t + ρ V art(RM,t+1)P
′
t1n,

where aM,t := γ
(
θRM,t+1 + (1− θ)RM,t+1

)
. Rearranging terms, we find the value of the market

P ′
t1n =

(1− φγ)Et(RM,t+1)−Rf + φaM,t

ρV art(RM,t+1)
.

40



Substituting P ′
t1n into (12), we find the expected return formula for asset j

(1− φγ)Et(Rj,t+1)−Rf = −φaj,t + ρCovt(Rj,t+1, RM,t+1)
(1− φγ)Et(RM,t+1)−Rf + φaM,t

ρV art(RM,t+1)

(1− φγ)Et(Rj,t+1)−Rf = −φaj,t + βj

(
(1− φγ)Et(RM,t+1)−Rf + φaM,t

)
.

Dividing through by (1− φγ) and rearranging terms, we find

Et(Rj,t+1)−Rf =
( φ

1− φγ

)(
− aj,t + βjaM,t + γ(1− βj)Rf

)
+ βj

(
Et(RM,t+1)−Rf

)
,

which we can write as a generalization of the standard CAPM,

Et(Rj,t+1)−Rf = αj + βj
(
Et(RM,t+1)−Rf

)
,

with the CAPM α being

αj =

(
φγ

1− φγ

)(
θ(βjRM,t+1 −Rj,t+1) + (1− θ)(βjRM,t+1 −Rj,t+1) + (1− βj)Rf

)
.

This concludes the proof of the proposition.

Proof of Corollary 2:

Part (1). Using the expression of the equilibrium price in (9), we have

RfPt = (1− φγ)EtPt+1 + φγ
(
θP t+1 + (1− θ)P t+1

)
− ρΣt1n,

Replacing RfP in the expressions of y∗ and x∗ in (7) and (8) gives us

x∗ = 1n + γ(1− φ)ρ−1Σ−1
t

(
− EtPt+1 +

(
θP t+1 + (1− θ)P t+1

))
, (13)

y∗ = 1n + γφρ−1Σ−1
t

(
EtPt+1 −

(
θP t+1 + (1− θ)P t+1

))
. (14)

Given the assumption of range-based expectations and given that the maximum and minimum

prices have not changed, an increase in the asset’s price must be due to an increase in the expected

price (e.g., arising from good news about the asset’s fundamentals). Thus, from the expression of
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RfPt, good news about fundamentals that increase EtPt+1 and keeps everything else unchanged,

increases Pt and pushes the price toward the max price P t+1. In addition, from the expressions

in (13) and (14), x∗ is decreasing in EtPt+1 and y∗ is increasing EtPt+1 (since the matrix Σt is

positive definite and the rest of the scalar coefficients are positive). Thus, the same news lowers

the holdings of the noise traders and raises the holdings of arbitrageurs.

Part (2). Consider an increase in the expected price Et pj,t+1, which increases pj,t and pushes it

to toward pj,t+1. Moreover, it causes arbitrageurs (noise traders) to buy (sell) asset j. Hence, it

only remains to show that αj increases in Et pj,t+1. Given that this change has negligible effect on

the market (i.e., individual stock weights are relatively small), to find the effect on αj we can use

Equation (5) which is reproduced below for convenience.

αj :=

(
φγ

1− φγ

)(
θ(βjRM −Rj) + (1− θ)(βjRM −Rj) + (1− βj)Rf

)
.

Thus, αj is affected only through a decline in both extreme returns Rj and Rj (since pj,t increases),

both of which increase αj .
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CAPM with Probability Weighting and Skewed Assets.” Working Paper SSRN, 2021. URL
https://papers. ssrn. com/sol3/papers. cfm.

Frazzini, Andrea, and Lasse Heje Pedersen. 2014. “Betting against beta.” Journal of Finan-
cial Economics, 111(1): 1–25.

Ghazi, Soroush, Kemar Gordon, Mark Schneider, and Jack Strauss. 2024. “Probability
Weighting drives Speculative Impact and Lottery Demand Anomalies.” Manuscript.

44



Ghazi, Soroush, Mark Schneider, and Jack Strauss. 2024. “Market Ambiguity Attitude
Restores the Risk-Return Tradeoff.” Available at SSRN 4536747.

Ghirardato, Paolo, Fabio Maccheroni, and Massimo Marinacci. 2004. “Differentiating
ambiguity and ambiguity attitude.” Journal of Economic Theory, 118(2): 133–173.

Gilboa, Itzhak, and David Schmeidler. 1989. “Maxmin expected utility with non-unique
prior.” Journal of Mathematical Economics, 18(2): 141–153.
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